-
>
公路車寶典(ZINN的公路車維修與保養秘籍)
-
>
晶體管電路設計(下)
-
>
基于個性化設計策略的智能交通系統關鍵技術
-
>
花樣百出:貴州少數民族圖案填色
-
>
山東教育出版社有限公司技術轉移與技術創新歷史叢書中國高等技術教育的蘇化(1949—1961)以北京地區為中心
-
>
鐵路機車概要.交流傳動內燃.電力機車
-
>
利維坦的道德困境:早期現代政治哲學的問題與脈絡
智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 版權信息
- ISBN:9787548747864
- 條形碼:9787548747864 ; 978-7-5487-4786-4
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 內容簡介
智慧地鐵專注于鐵路系統的新概念和新模式,是數據科學與工程的跨學科研究。智慧地鐵車站系統基于車站中的全息感知,終端平臺控制和高度自治的操作。它提供實時的自主服務和車站服務設施的監控以實現車站設備、環境和乘客的智能管理。智慧地鐵是一個新興的領域。本書介紹智慧地鐵車站系統中數據科學和工程學的關鍵技術,并將其分為三個部分,包括環境、人類和能源。本書介紹智慧地鐵車站系統中數據科學和工程學的*新技術。。本書可以為研究人員提供重要參考,并鼓勵以后在智慧地鐵、智能鐵路、數據科學與工程、人工智能和其他相關領域進行后續研究。本書與愛思唯爾聯合出版。
智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 目錄
1.1 Overview of data science and engineering
1.2 Framework of smart metro station systems
1.3 Human and smart metro station systems
1.4 Environment and smart metro station systems
1.5 Energy and smart metro station systems
1.6 Scope of this book
References
Chapter 2 Metro traffic flow monitoring and passenger guidance
2.1 Introduction
2.2 Description of metro traffic flow data
2.3 Prediction of metro traffic flow based on Elman neural network
2.4 Prediction of metro traffic flow based on deep echo state network
2.5 Passenger guidance strategy based on prediction results
2.6 Conclusions
References
Chapter 3 Individual behavior analysis and trajectory prediction
3.1 Introduction
3.2 Description of individual GPS data
3.3 Preprocessing of individual GPS data
3.4 Prediction of GPS trajectory based on optimized extreme learning machine
3.5 Prediction of GPS trajectory based on optimized support vector machine
3.6 Analysis of individual behavior based on prediction results
3.7 Conclusions
References
Chapter 4 Clustering and anomaly detection of crowd hotspot regions
4.1 Introduction
4.2 Description of crowd GPS data
4.3 Preprocessing of crowd GPS data
4.4 Clustering of crowd hotspot regions based on K-means
4.5 Clustering of crowd hotspot regions based on DBSCAN
4.6 Anomaly detection of crowd hotspot regions based on Markov chain
4.7 Conclusions
References
Chapter 5 Monitoring and deterministic prediction of station humidity
5.1 Introduction
5.2 Description of station humidity data
5.3 Deterministic prediction of station humidity based on optimization ensemble
5.4 Deterministic prediction of station humidity based on stacking ensemble
5.5 Evaluation of deterministic prediction results
5.6 Conclusions
References
Chapter 6 Monitoring and probabilistic prediction of station temperature
6.1 Introduction
6.2 Description of station temperature data
6.3 Interval prediction of station temperature based on quantile regression
6.4 Interval prediction of station temperature based on kernel density estimation
6.5 Evaluation of probabilistic prediction results
6.6 Conclusions
References
Chapter 7 Monitoring and spatial prediction of multi-dimensional air pollutants
7.1 Introduction
7.2 Description of multi-dimensional air pollutants data
7.3 Dimensionality reduction of multi-dimensional air pollutants data
7.4 Spatial prediction of air pollutants based on Long Short-Term Memory
7.5 Evaluation of spatial prediction results
7.6 Conclusions
References
Chapter 8 Time series feature extraction and analysis of metro load
8.1 Introduction
8.2 Description of metro load data
8.3 Feature extraction of metro load based on statistical methods
8.4 Feature extraction of metro load based on transform methods
8.5 Feature extraction of metro load based on model
8.6 Conclusions
References
Chapter 9 Characteristic and correlation analysis of metro load
9.1 Introduction
9.2 The theoretical basis of correlation analysis
9.3 Description of metro load data
9.4 Correlation analysis of metro load and environment data
9.5 Correlation analysis of metro load and operation data
9.6 Comprehensive correlation ranking of metro load and related data
9.7 Conclusions
References
Chapter 10 Metro load prediction and intelligent ventilation control
10.1 Introduction
10.2 Description of short-term and long-term metro load data
10.3 Short-term prediction of metro load data based on ANFIS model
10.4 Long-term prediction of metro load data based on SARIMA model
10.5 Performance evaluation of prediction results
10.6 Intelligent ventilation control based on prediction results
10.7 Conclusions
References
智慧地鐵車站系統:數據科學與工程:data science and engineering:英文版 作者簡介
劉輝,現任中南大學二級教授、博導、交通院副院長。 主要研究方向為軌道交通與人工智能。獲中德雙博士學位(交通運輸工程/自動化工程)、德國教授文憑。入選國家萬人計劃青年拔尖人才、全球2%頂尖科學家榜單、愛思唯爾中國高被引學者。 獲國家科技進步獎一等獎(排15)、教育部自然科學獎二等獎(排1)、中國交通運輸協會科技進步獎一等獎(排1)等;獲施普林格-自然“中國新發展獎”、中國智能交通協會科技領軍人才獎、中國交通運輸協會首屆青年獎、湖南省青年科技獎、寶鋼優秀教師獎等。
- >
【精裝繪本】畫給孩子的中國神話
- >
二體千字文
- >
名家帶你讀魯迅:故事新編
- >
中國歷史的瞬間
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
我與地壇
- >
苦雨齋序跋文-周作人自編集
- >
自卑與超越