>
>>
Scikit-Learn與TensorFlow機(jī)器學(xué)習(xí)實(shí)用指南
Scikit-Learn與TensorFlow機(jī)器學(xué)習(xí)實(shí)用指南 版權(quán)信息
- ISBN:9787564173715
- 條形碼:9787564173715 ; 978-7-5641-7371-5
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
Scikit-Learn與TensorFlow機(jī)器學(xué)習(xí)實(shí)用指南 本書特色
TensorFlow是一個(gè)采用數(shù)據(jù)流圖(data flow graphs),用于數(shù)值計(jì)算的開源軟件庫。節(jié)點(diǎn)(Nodes)在圖中表示數(shù)學(xué)操作,圖中的線(edges)則表示在節(jié)點(diǎn)間相互聯(lián)系的多維數(shù)據(jù)數(shù)組,即張量(tensor)。它靈活的架構(gòu)讓你可以在多種平臺上展開計(jì)算,例如臺式計(jì)算機(jī)中的一個(gè)或多個(gè)CPU(或GPU),服務(wù)器,移動設(shè)備等等。本書講述TensorFlow相關(guān)知識。
Scikit-Learn與TensorFlow機(jī)器學(xué)習(xí)實(shí)用指南 內(nèi)容簡介
本書很好地介紹了利用神經(jīng)網(wǎng)絡(luò)解決問題的相關(guān)理論與實(shí)踐。它涵蓋了構(gòu)建高效應(yīng)用涉及的關(guān)鍵點(diǎn)以及理解新技術(shù)所需的背景知識。
Scikit-Learn與TensorFlow機(jī)器學(xué)習(xí)實(shí)用指南 目錄
PrefacePart I. The Fundamentals of Machine Learning 1. The Machine Learning Landscape What Is Machine Learning
Why Use Machine Learning
Types of Machine Learning Systems Supervised/Unsupervised Learning Batch and Online Learning Instance-Based Versus Model-Based Learning Main Challenges of Machine Learning Insufficient Quantity of Training Data Nonrepresentative Training Data Poor-Quality Data Irrelevant Features Overfitting the Training Data Underfitting the Training Data tepping Back Testing and Validating Exercises 2. End-to-End Machine Learning Project Working with Real Data Look at the Big Picture Frame the Problem Select a Performance Measure Check the Assumptions Get the Data Create the Workspace Download the Data Take a Quick Look at the Data Structure Create a Test Set Discover and Visualize the Data to Gain Insights Visualizing Geographical Data Looking for Correlations Experimenting with Attribute Combinations Prepare the Data for Machine Learning Algorithms Data Cleaning Handling Text and Categorical Attributes Custom Transformers Feature Scaling Transformation Pipelines Select and Train a Model Training and Evaluating on the Training Set Better Evaluation Using Cross-Validation Fine-Tune Your Model Grid Search Randomized Search Ensemble Methods Analyze the Best Models and Their Errors Evaluate Your System on the Test Set Launch, Monitor, and Maintain Your System Try It Out!
Exercises 3. Classification MNIST Training a Binary Classifier Performance Measures Measuring Accuracy Using Cross-Validation Confusion Matrix Precision and Recall Precision/Recall Tradeoff The ROC Curve Multiclass Classification Error Analysis Multilabel Classification Multioutput Classification……
Part II. Neural Networks and Deep LearningA. Exercise SolutionsB. Machine Learning Project ChecklistC. SVM Dual ProblemD. AutodiffE. Other Popular ANN ArchitecturesIndex
展開全部
書友推薦
- >
巴金-再思錄
- >
回憶愛瑪儂
- >
苦雨齋序跋文-周作人自編集
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
名家?guī)阕x魯迅:故事新編
- >
李白與唐代文化
- >
隨園食單
- >
龍榆生:詞曲概論/大家小書
本類暢銷