婷婷五月情,国产精品久久久久久亚洲小说,runaway韩国电影免费完整版,国产乱在线观看视频,日韩精品首页,欧美在线视频二区

歡迎光臨中圖網 請 | 注冊
> >>
非線性時間序列分析-第2版

包郵 非線性時間序列分析-第2版

出版社:世界圖書出版公司出版時間:2015-03-01
開本: 16開 頁數: 369
本類榜單:自然科學銷量榜
中 圖 價:¥76.5(8.6折) 定價  ¥89.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

非線性時間序列分析-第2版 版權信息

  • ISBN:9787510087721
  • 條形碼:9787510087721 ; 978-7-5100-8772-1
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

非線性時間序列分析-第2版 本書特色

本書旨在以動力系統理論為基礎,闡述時間序列分析的現代方法。這部修訂版,增加了一些新的章節,對原版進行了大量的修訂和擴充。從潛在的理論出發,到實際應用話題,并用眾多 領域收集來的大量經驗數據解釋這些實用話題。本書對研究時間變量信號的各個領域包括地球、生命科學科學家和工程人員都十分有用。 目次:基本話題:導論;線性工具和一般考慮;相空間方法;確定論和可預測性;不穩定性:lyapunov指數;自相似性:當決定論是弱的時候非線性方法的應用;非線性線性精選;高等話題:高等浸入式方法;混沌數據和噪音;更多有關不變量;模型和預測;非平穩信號;耦合和非線性系統綜合;混沌控制。a:tisean程序應用;b:實驗數據集合描述。 讀者對象:數學、生命科學、經濟等眾多實踐應用領域的科研人員。

非線性時間序列分析-第2版 內容簡介

本書旨在以動力系統理論為基礎,闡述時間序列分析的現代方法。這部修訂版,增加了一些新的章節,對原版進行了大量的修訂和擴充。從潛在的理論出發,到實際應用話題,并用眾多 領域收集來的大量經驗數據解釋這些實用話題。本書對研究時間變量信號的各個領域包括地球、生命科學科學家和工程人員都十分有用。 目次:基本話題:導論;線性工具和一般考慮;相空間方法;確定論和可預測性;不穩定性:Lyapunov指數;自相似性:當決定論是弱的時候非線性方法的應用;非線性線性精選;高等話題:高等浸入式方法;混沌數據和噪音;更多有關不變量;模型和預測;非平穩信號;耦合和非線性系統綜合;混沌控制。A:TISEAN程序應用;B:實驗數據集合描述。 讀者對象:數學、生命科學、經濟等眾多實踐應用領域的科研人員。

非線性時間序列分析-第2版 目錄

Preface to the first editionPreface to the second editionAcknowledgementsI Basic topics1 Introduction: why nonlinear methods? 2 Linear tools and general considerations2.1 Stationarity and sampling2.2 Testing for stationarity2.3 Linear correlations and the power spectrum2.3.1 Stationarity and the low-frequency component in thepower spectrum2.4 Linear filters2.5 Linear predictions3 Phase space methods3.1 Determinism: uniqueness in phase space3.2 Delay reconstruction3.3 Finding a good embedding3.3.1 False neighbours3.3.2 The time lag3.4 Visual inspection of data3.5 Poincar6 surface of section3.6 Recurrence plots 4 Determinism and predictability4.1 Sources of predictability4.2 Simple nonlinear prediction algorithm4.3 Verification of successful prediction4.4 Cross-prediction errors: probing stationarity4.5 Simple nonlinear noise reduction5 Instability: Lyapunov exponents5.1 Sensitive dependence on initial conditions5.2 Exponential divergence5.3 Measuring the maximal exponent from data6 Self-similarity: dimensions6.1 Attractor geometry arid fractals6.2 Correlation dimension6.3 Correlation sum from a time series6.4 Interpretation and pitfalls6.5 Temporal correlations, non-stationarity, and space timeseparation plots6.6 Practical considerations6.7 A useful application: determination of the noise level using thecorrelation integral6.8 Multi-scale or self-similar signals6.8.1 Scaling laws6.8.2 Detrended fluctuation analysis7 Using nonlinear methods when determinism is weak7.1 Testing for nonlinearity with surrogate data7.1.1 The hypothesis7.1.2 How to make surrogate data sets7.1.3 Which statistics to use7.1.4 What can go wrong7.1.5 What we have learned7.2 Nonlinear statistics for system discrimination7.3 Extracting qualitative information from a time series8 Selected nonlinear phenomena8.1 Robustness and limit cycles8.2 Coexistence of attractors8.3 Transients8.4 Intermittency8.5 Structural stability8.6 Bifurcations8.7 Quasi-periodicityII Advanced topics9 Advanced embedding methods9.1 Embedding theorems9.1.1 Whitney's embedding theorem9.1.2 Takens's delay embedding theorem9.2 The time lag9.3 Filtered delay embeddings9.3.1 Derivative coordinates9.3.2 Principal component analysis9.4 Fluctuating time intervals9.5 Multichannel measurements9.5.1 Equivalent variables at different positions9.5.2 Variables with different physical meanings9.5.3 Distributed systems9.6 Embedding of interspike intervals9.7 High dimensional chaos and the limitations of the time delayembedding9.8 Embedding for systems with time delayed feedback10 Chaotic data and noise10.1 Measurement noise and dynamical noise10.2 Effects of noise10.3 Nonlinear noise reduction10.3.1 Noise reduction by gradient descent10.3.2 Local projective noise reduction10.3.3 Implementation of locally projective noise reduction10.3.4 How much noise is taken out? 10.3.5 Consistency tests10.4 An application: foetal ECG extraction11 More about invariant quantities11.1 Ergodicity and strange attractors11.2 Lyapunov exponents II11.2.1 The spectrum of Lyapunov exponents and invariantmanifolds11.2.2 Flows versus maps11.2.3 Tangent space method11.2.4 Spurious exponents11.2.5 Almost two dimensional flows11.3 Dimensions II11.3.1 Generalised dimensions, multi-fractals11.3.2 Information dimension from a time series11.4 Entropies11.4.1 Chaos and the flow of information11.4.2 Entropies of a static distribution11.4.3 The Kolmogorov-Sinai entropy11.4.4 The E-entropy per unit time11.4.5 Entropies from time series data11.5 How things are related11.5.1 Pesin's identity11.5.2 Kaplan-Yorke conjecture12 Modelling and forecasting12.1 Linear stochastic models and filters12.1.1 Linear filters12.1.2 Nonlinear filters12.2 Deterministic dynamics12.3 Local methods in phase space12.3.1 Almost model free methods12.3.2 Local linear fits12.4 Global nonlinear models12.4.1 Polynomials12.4.2 Radial basis functions12.4.3 Neural networks12.4.4 What to do in practice12.5 Improved cost functions12.5.1 Overfitting and model costs12.5.2 The errors-in-variables problem12.5.3 Modelling versus prediction12.6 Model verification12.7 Nonlinear stochastic processes from data12.7.1 Fokker-Planck equations from data12.7.2 Markov chains in embedding space12.7.3 No embedding theorem for Markov chains12.7.4 Predictions for Markov chain data12.7.5 Modelling Markov chain data12.7.6 Choosing embedding parameters for Markov chains12.7.7 Application: prediction of surface wind velocities12.8 Predicting prediction errors12.8.1 Predictability map12.8.2 Individual error prediction12.9 Multi-step predictions versus iterated one-step predictions13 Non-stationary signals13.1 Detecting non-stationarity13.1.1 Making non-stationary data stationary13.2 Over-embedding13.2.1 Deterministic systems with parameter drift13.2.2 Markov chain with parameter drift13.2.3 Data analysis in over-embedding spaces13.2.4 Application: noise reduction for human voice13.3 Parameter spaces from data14 Coupling and synchronisation of nonlinear systems14.1 Measures for interdependence14.2 Transfer entropy14.3 Synchronisation15 Chaos control15.1 Unstable periodic orbits and their invariant manifolds15.1.1 Locating periodic orbits15.1.2 Stable/unstable manifolds from data15.2 OGY-control and derivates15.3 Variants of OGY-control15.4 Delayed feedback15.5 Tracking15.6 Related aspectsA Using the TISEAN programsA.1 Information relevant to most of the routinesA.1.1 Efficient neighbour searchingA.1.2 Re-occurring command optionsA.2 Second-order statistics and linear modelsA.3 Phase space toolsA.4 Prediction and modellingA.4.1 Locally constant predictorA.4.2 Locally linear predictionA.4.3 Global nonlinear modelsA.5 Lyapunov exponentsA.6 Dimensions and entropiesA.6.1 The correlation sumA.6.2 Information dimension, fixed mass algorithmA.6.3 EntropiesA.7 Surrogate data and test statisticsA.8 Noise reductionA.9 Finding unstable periodic orbitsA.10 Multivariate dataB Description of the experimental data setsB.1 Lorenz-like chaos in an NH3 laserB.2 Chaos in a periodically modulated NMR laserB.3 Vibrating stringB.4 Taylor--Couette flowB.5 Multichannel physiological dataB.6 Heart rate during atrial fibrillationB.7 Human electrocardiogram (ECG)B.8 Phonation dataB.9 Postural control dataB.10 Autonomous CO2 laser with feedbackB.11 Nonlinear electric resonance circuitB.12 Frequency doubling solid state laserB.13 Surface wind velocitiesReferencesIndex
展開全部

非線性時間序列分析-第2版 作者簡介

Holger Kantz(H.坎茲,德國)是國際知名學者,在數學和物理學界享有盛譽。本書凝聚了作者多年科研和教學成果,適用于科研工作者、高校教師和研究生。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 欧美性生活视屏 | 99久热这里只有精品免费 | www.欧美com| 久久福利资源站免费观看i 久久福利资源国产精品999 | 午夜免费观看福利片一区二区三区 | www.亚洲成人| 久久国产精品麻豆映画 | 欧美性网| 999成人精品视频在线 | 日本久久久久久久 | 不卡一区二区在线观看 | 久久91亚洲精品中文字幕 | 久久免费视频网 | 99久久这里只精品国产免费 | 久久国产精品免费看 | 极品美女一区二区三区视频 | 潦草电影网 | 午夜美女视频在线观看高清 | 久久99久久精品国产只有 | 99热在线观看免费 | 99视频网站 | a天堂资源在线观看 | 欧洲女人性行为免费视频 | 久久伊人热 | 日韩在线精品 | 欧美a在线观看 | 国产片网站 | 黄色在线视频观看 | 四虎影视紧急入口地址大全 | 国产99色 | 美女网站免费观看视频 | 日本一区二区不卡久久入口 | 日韩欧美亚洲综合 | 国产不卡在线蜜 | 福利在线免费 | 久久97精品久久久久久久看片 | 久久大陆| 华丽的外出手机在线观看 | 日不卡| 公主殿下1v3小说免费阅读 | 国产理论在线观看 |