婷婷五月情,国产精品久久久久久亚洲小说,runaway韩国电影免费完整版,国产乱在线观看视频,日韩精品首页,欧美在线视频二区

歡迎光臨中圖網 請 | 注冊

包郵 非線性分析方法

作者:張恭慶
出版社:世界圖書出版公司出版時間:2014-05-01
開本: 24開 頁數: 439
本類榜單:自然科學銷量榜
中 圖 價:¥60.3(8.7折) 定價  ¥69.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

非線性分析方法 版權信息

非線性分析方法 本書特色

張恭慶編著的《非線性分析方法》內容介紹: The book is the result of many years of revision of the author's lecture notes. Some of the more involved sections were originally used in seminars as introductory parts of some new subjects. However, due to their importance,the materials have been reorganized and supplemented, so that they may be more valuable to the readers.

非線性分析方法 內容簡介

     張恭慶編著的《非線性分析方法》內容介紹: the book is the result of many years of revision of the author's lecture notes. some of the more involved sections were originally used in seminars as introductory parts of some new subjects. however, due to their importance,the materials have been reorganized and supplemented, so that they may be more valuable to the readers. 

非線性分析方法 目錄

1  linearization
  1.1  differential calculus in banach spaces
    1.1.1  frechet derivatives and gateaux derivatives
    1.1.2  nemytscki operator
    1.1.3  high-order derivatives
  1.2  implicit function theorem and continuity method
    1.2.1  inverse function theorem
    1.2.2  applications
    1.2.3  continuity method
  1.3  lyapunov-schmidt reduction and bifurcation
    1.3.1  bifurcation
    1.3.2  lyapunov-schmidt reduction
    1.3.3  a perturbation problem
    1.3.4  gluing
    1.3.5  transversality
  1.4  hard implicit function theorem
    1.4.1  the small divisor problem
    1.4.2 nash-moser iteration
2  fixed-point theorems
  2.1  order method
  2.2  convex function and its subdifferentials
    2.2.1  convex functions
    2.2.2  subdifferentials
  2.3  convexity and compactness
  2.4  nonexpansive maps
  2.5  monotone mappings
  2.6  maximal monotone mapping
3  degree theory and applications
  3.1  the notion of topological degree
  3.2  fundamental properties and calculations of brouwer degrees
  3.3  applications of brouwer degree
    3.3.1  brouwer fixed-point theorem
    3.3.2  the borsuk-ulam theorem and its consequences
    3.3.3  degrees for s1 equivariant mappings
    3.3.4  intersection
  3.4  leray-schauder degrees
  3.5  the global bifurcation
  3.6  applications
    3.6.1  degree theory on closed convex sets
    3.6.2  positive solutions and the scaling method
    3.6.3  krein-rutman theory for positive linear operators
    3.6.4  multiple solutions
    3.6.5  a free boundary problem
    3.6.6  bridging
  3.7  extensions
    3.7.1  set-valued mappings
    3.7.2  strict set contraction mappings and condensing mappings
    3.7.3  fredholm mappings
4  minimization methods
  4.1  variational principles
    4.1.1  constraint problems
    4.1.2  euler-lagrange equation
    4.1.3  dual variational principle
  4.2  direct method
    4.2.1  fundamental principle
    4.2.2  examples
    4.2.3  the prescribing gaussian curvature problem and the schwarz symmetric rearrangement
  4.3  quasi-convexity
    4.3.1  weak continuity and quasi-convexity
    4.3.2  morrey theorem
    4.3.3  nonlinear elasticity
  4.4  relaxation and young measure
    4.4.1  relaxations
    4.4.2  young measure
  4.5  other function spaces
    4.5.1  bv space
    4.5.2  hardy space and bmo space
    4.5.3  compensation compactness
    4.5.4  applications to the calculus of variations
  4.6  free discontinuous problems
    4.6.1  f-convergence
    4.6.2  a phase transition problem
    4.6.3  segmentation and mumford-shah problem
  4.7  concentration compactness
    4.7.1  concentration function
    4.7.2  the critical sobolev exponent and the best constants
  4.8  minimax methods
    4.8.1  ekeland variational principle
    4.8.2  minimax principle
    4.8.3  applications
5  topological and variational methods
  5.1  morse theory
    5.1.1  introduction
    5.1.2  deformation theorem
    5.1.3  critical groups
    5.1.4  global theory
    5.1.5  applications
  5.2  minimax principles (revisited)
    5.2.1  a minimax principle
    5.2.2  category and ljusternik-schnirelmann multiplicity theorem
    5.2.3  cap product
    5.2.4  index theorem
    5.2.5  applications
  5.3  periodic orbits for hamiltonian system and weinstein conjecture
    5.3.1  hamiltonian operator
    5.3.2  periodic solutions
    5.3.3  weinstein conjecture
  5.4  prescribing gaussian curvature problem on s2
    5.4.1  the conformal group and the best constant
    5.4.2  the palais-smale sequence
    5.4.3  morse theory for the prescribing gaussian curvature equation on s2
  5.5  conley index theory
    5.5.1  isolated invariant set
    5.5.2  index pair and conley index
    5.5.3  morse decomposition on compact invariant sets and its extension
  notes
references
展開全部

非線性分析方法 作者簡介

作者張恭慶是國際知名學者,在數學和物理學界享有盛譽。本書凝聚了作者多年科研和教學成果,適用于科研工作者、高校教師和研究生。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 三级韩国一区久久二区综合 | 久久成人a毛片免费观看网站 | 黄污视频免费观看 | 婷婷5月天 | 亚洲午夜久久久 | 欧美在线视频第一页 | 午夜精品久久久久久 | 精品久久久久久久久久中文字幕 | 久久99国产精品久久99软件 | 久久婷婷国产综合精品青草 | 国产中文字幕第一页 | 99免费精品视频 | 庭院里的女人在线观看完整版 | 国产欧美曰韩一区二区三区 | 四虎网址大全 | 成人亚洲网站 | 久久6国产| 四虎国产精品永免费 | 国产精品成人第一区 | 久久久久久久久久综合情日本 | www.五月婷婷.com | 奇米一区二区三区四区久久 | 久久狠狠躁免费观看2020 | 毛片福利 | 国产成人高清视频 | 欧美日韩视频在线播放 | 国产精品久久久久久一区二区三区 | 综合精品视频 | 69国产成人综合久久精品 | 欧美成人精品一区二三区在线观看 | 国产成人精品午夜 | 国产免费一区二区三区最新 | 普通话对白国产精品一级毛片 | 蜜臀在线观看 | 爱爱帝国亚洲一区二区三区 | 国产成人亚洲综合一区 | 欧美国产综合 | 97视频在线免费观看 | 国产aⅴ精品一区二区三区久久 | 国产精品久久久香蕉 | 免费特黄一区二区三区视频一 |